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A CHARACTERIZATION OF THE GAMMA

DISTRIBUTION FROM A RANDOM DIFFERENCE EQUATION

by

Eric S. Tollar

ABSTRACT

A characterization of the gamma distribution is considered which arises

from a random difference equation. A proof without characteristic functions is

given that if V and Y are independent random variables, then the independence

of V • Y and (I -V) * Y results in a characterization of the gamma distribution

(after excluding the trivial cases).
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. 1. Introduction

The general random difference equation is defined recursively by

(1.1) Yn = MnYn- ' n l,

where Mn are random d x d matrices, and Qn and ¥n are random d-vectors. This

equation has proven useful as a model for physical phenomena (see Bernard,

Shenton and Uppuluri (1967), and Cavalli-Sforza and Feldman (1973)), and as a

useful mathematical tool (see, for example, Solomon (1975)).

Kesten (1973) has established some general conditions under which Yn con-

verges in distribution for d Z 1 as n approaches infinity. Paulson and Uppuluri

" (1972), and Verwaat (1979) have some partial results on the characterization of

the limiting distribution of (1.1) for d= 1.

A very specific version of (1.1) when d =2 will be examined. Under reason-

able conditions it is shown that asymptotic independence of Y and Y resultsl ,n 2,n

in a characterization of the gamma distribution. More specifically, it is shown

that often asymptotic independence of Yln and Y2n implies that there are inde-

pendent random variables V and Y where V • Y and (1 -V)* Y are also independent.

In the non-trivial cases this implies that Y has a gamma distribution, and V has

a beta distribution.

As can be easily shown, this is yet another generalization of the celebrated

- characterization of the gamma distribution of Lukacs (1955), (for an example of

other generalizations, see Marsaglia (1974)). A simple proof of this (i.e.,

one without characteristic functions) is given in section 2 of this paper.

Section 3 is devoted to the difference equation from which the characterization

arose.

-da ld~m li H aiDil~li. .. . . ....
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. 2. A Characterization of the Gamma Distribution

In the following, it is said x-r(, 0) if

(2.1) P(Xg <x) = I(x> O)r(o) "If xf(y) C Y.

* "7and X~B(a, 0) if

(2.2) P(X 5x) 1(o< x< 1)13 (a, a) -Ifxya-1(l -y)5-ldy.

Also, for any random variable X and arbitrary set A, we define the random var-

iable XA by the res-riction of X to the set A. That is,

(2.3) P(XA x) =P(XcA)-lP(Xgx, XeA).

The following lemma proves to be useful in this section.

* LEMMA 3.1. Let U, W be independent random variables, where U>IV>O. Then

U(U-W)-1 and U-W1 are independent if and only if U-c, W-d, c>d>O.

PROOF. It is clear there must be a constant e where

(2.4) P(U > e)= P( 1 e) =.

• .Let

(t b1 =inf {x: P(1!x)=l},( 2.5)b

b2 = sup {x: P(U:x) =1.

Then, since U-W!b 2 -bI, 11:b 1,

(2.6) U(U-W)-1 =1+W(U-W)-:<b2 (b2  bl)-I.

From the definition of b1 and b2, it is equally clear that for all e> O,

P(U -1*1 < b2 -b 1 + C) >0. Because U- W and U(U - W).1 are independent,
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(2.7) P(U(U- l1)- > b2 (b 2 - bI + er) 1 )

=P4U(U - W€)-1 >b2(b 2 -b 1 +e)-I IU - I<b -b 1 + C).

Since

(2.8) {w: U-I<b 2 -b +)c{w: (U<b 2 +c)n(W>b 1 -e)},

-U-W<b 2 -b I  therefore implies that U(U- -I>I+ (b1 - )(b 2 -b+e ) - I =

b2 (b 2 -b 1 +C)
- I . Therefore, for all c>0,

(2.9) P(U(U - W)-1 >b2 b2  b 1 +c)'lIU-W<b 2  b1 +)l.

* Coupled with (2.7), (2.9) implies that

( (2.10) P(U(U - W) b 2(b 2 - b1 ) =.

Combined with (2.6), it is established that P(U(U -W) 1 =b2 (b 2 -b l )1)

in turn establishes the lemma, where c b2 and d = b 0
2 1.

As a first step in showing that for independent random variables V and Y,

V -Y being independent of (1- V) * Y leads to a characterization of the Gamma

distribution, the following theorem is established.

THEOREM 2.2. If Y->O, and if V and Y are independent, then VY and (1-V)Y are

independent if and only if one of the five conditions below are true:

1) Y o,

2) V 0,

3) V 1,

4) Y c, V d,

s) Y-r(x, cx+s), v~ ct, .

........................- p........................
.* *.° ** %
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*PROOF. Since sufficiency is obvious, only the necessity of the conditions need

be established. For convenience, let

(2.11) X=VY and Z= (I-V)Y.

* Further, let

A ={Y=O1{X=O, Z=01

A 2U{YOV" 1={X<O, Z>O1

(2.12) A 3 ={Y>O, V=O}={X=O, Z>O}
(2.12 A4 {Y>O, O'V<1={X>O, Z>O1

A 5=(Y'>O, V=l)={X>O, Z=O1
A 6 -{Y>O, V>l1=fX.O, Z<O1.

From (2.3), it is easily seen that since V and Y are independent, so are VA

*and YA. for all i. Similarly X and Z being independent implies XA and ZA. are

also.

The proof requires little other than the observation that since Y and V are

independent, and X and Z are also assumed to be independent, then since

Y Y>O1 {Y>O, VcBI' we have for i ~ 1, j ~l

(2.13) YA -A

It can be similarly seen that for iz:4, j2:4

*(2.14) x 'xA
A A

and for 2ei:94, 2:5j!54,

* (2.1S) ZA ZA

It can then be shown that only the 5 conditions of the theorem do not violate

one of (2.13), (2.14), or (2.15).



Since P(Y = 0) = 1 is condition I of the theorem, it is assumed that P(Y =0) < 1

throughout. Two cases will be considered; when P(0 < V < 1) = 0 and when

P(0<V< ) >0.

Case I: P(O<V<1) =0.

P(0<V<1)=0 implies P(X>0, Z>0)=0. Therefore, either P(X>0)=0, or

P(Z>0) =0. Assume that P(Z>0) =0. As such, P(A 2 uA 3 uA 4 ) = 0.

If P(A6)> 0, then XA 0, ZA > 0, andX Z =Y >0. SinceX -6 , Z6 A6 Z6 A6 A6' Z6

are independent, and XA6 + ZA6 = Y and XA6(XA6 + ZA6 -=VA6 are also independent,

the application of lemr.a 2.1 where U="A 6 , -=-ZA yields XA =c, ZA =-d, and
%69 A6 A6 A6

Y A=c- d, for c>d•0. If in addition P(A5 >0), then X YA However, from
A 6

(2.13) and (2.14) it must be true that X -X andY A if both P(A5)>0

and P(A6) > 0. Thus at most one of AS and A6 can have probability greater than 0.

Assume that P(A5) > 0 (and therefore P(A 2 uA uA u = 0). Then from the

independence of Y and V it can be seen that

(2.16) P(Y= 0, V 1) =P(Y=0)P(V* 1) =P(Y=0)P(Y= 0, Ve . ).

As such, P(Y=0)= 1, which is condition 1, or P(Y=0, Vs 1) =0, which yields

r(v = 1) =1 (condition 3). .

If P(A6) > 0 is assumed instead, a similar condition based on the independ-

ence of X and Z will yield that P(A6) = 0 or P(A6) = 1 which are conditions 1 and

4, respectively.

Finally, if it is instead assumed that P(X > 0)= 0, then by similar arguments

it can be shown that one of condition 1, condition 2 or condition 4 must apply.

• ...... *~.._ . .. . . ......,. i,,,, m1 . . . '-. ", ,/ . ',, - "-"--"--"""
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Case II: P(O<V<1) >0.

Since it is assumed that P(Y=0) <1, it follows that P(A4) =

P(Y>O, 0<V< 1) >0. Clearly XA >0, ZA >0, X and Z are .ndependent. Also,
A4 4 A4 A4

VA 4and YA4 are independent and as can be seen from (2.11),

YA 4 = XA4  ZA4 '

VA4 = XA 4 (XA ZA4 o

Therefore Lukacs' characterization of the gamma distribution yields,

XA4 -r, a), ZA 4r(x, 8),

which implies

SA 4r(4 , a+8), VA 4-B(a, 8).

If P(A 2 ) 0, then letting U=ZA W=-XA , appealing to lemma 2.1 again
2 2

yields that ZA= C, XA =-d. However, from (2.15), ZA 2-ZA 4 which implies thatZ2 ,A2 2 Z ~A4'

* P(A2) =0. Assuming that P(A6) > 0 yields a similar contradiction for the distri-

bution of X.

If P(A 3 ) > 0, then YA3= ZA 3, since XA3= 0. But (2.13) and (2.15) imply that

YA3 -r, a+ 8) and ZA3 ~ r(x, 8). As such, P(A3)= 0. A similar argument yields

" that P(A 5 )0.

These observations collectively imply P(0< V <1)= 1. Finally, the observa-

tion that the independence of X and Z implies

. (2.17) P(A) =P(X=0, Z=0) =P(X=0)P(Z=0) =P(AI) 2

o ..,- * *. . . . . . . .- -.- . . - - -.- .. .

. . . . . . . . . . . ..T p * ~ . . . . . . .
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" yields that P(A1) =1 which is condition 1, or P(A1) =0 which yields P(A4) =1,

and in turn implies condition 5. 0

In the next theorem, the condition that Y>0 in theorem 2.2 is removed.

THEOREM 2.3. If V and Y are independent random variables, then VY and (1- V)Y

are independent if and only if one of the conditions below are true:

1) Y-O,

2) V-0,

3) V 1,

4) Y-c, V-d,

5) Y-r(X, a+O), V~B(a, 0),

i6) -Y-r(A, a+$), V-B(a, 0).

• PROOF. Again the sufficiency is obvious, so only the necessity of the conditions

- need be established. Clearly if either P(Y20) = 1 or P(Y<0) = 1, then by theorem

*i 2.2, the proof is complete. It will therefore be assumed throughout that

P(Y >O) >0 and P(Y <0) >0, which will be shown to generate a contradiction.

As in theorem 2.2, again sets are defined and restricted random variables

*are examined. The sets are:

AI = {Y = 0} {X=0, Z=O)

A 2 ={Y>OV<0}={X<O, Z>0, X+Z>0)

A 3 = (Y>0, V=01={X=O, Z>0}

A 4={Y>0, 0<V<}={X>0, Z=0}

As={Y>0, V=1}={X>O, Z=0)

(2.18) A6 ={Y>0, V>l={X>o, Z<0', X+Z>0}

A7 ={Y<0, V<0}={X>0, Z<0, X+Z<0}

A 8={Y<O, V=01={X=O, Z<01

A9 =(Y<O, 0<V<l}={X<0, Z<01

AI 0 =(Y<0, V=1={X<O, Z=0}

Alf{Y< 0, V 1 (X <0, Z >0, X+Z< 0).

...-.' ,............ -. ".,..-......-.-.-....-.........-.-.....,..........'."..........,................................A' ' * ,-. .. .
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Note that while all Ai are of the form A.- {Yc A, VcB), the sets A2, A6,

A7 and A cannot be expressed as Ai ={XEA, ZeB), for AcR, BcR.

If it is temporarily assumed that P(0<V< 1) >0, then P(X>0, Z >0) >0,

P(X< 0, Z< 0)> 0. Since X and Z are independent, this condition also implies

that P(X>0, Z<O) >0 and P(X<0, Z>0) >0. Thus P(A2 uA 1 1)> 3 , P(A4) >0,

P(A6 uA 7) >0, P(A9) >0.

By appealing to Lukacs characterization as in theorem 2.2, it follows thatI XA 4~r(x1, 'l)' ZA -r x . 61)$ YA 4r(xi, a I+ Bl)
44 4

(2.19)
-XA 9r(X 2, a 2). "ZA r(x2, 82) -YA r(A2, CL2 +82)

A 22 A9 2 2 A9 2

' By arguments similar to those of (2.13), (2.14) and (2.15), it follows that

XA6 (2 { A ZA u A7  r(;l, 'l x r(x2' 02)

Since P(A6 uAT) 7>0, it will be temporarily assumed that P(A6) > 0. Clearly, it

follows rom (2.13) that

(2.21) YA6 r( 1, aI 4 M1).

- It can be trivially verified fron (2.20) for x0 > 0, z0 <0 that

wL. a 1 "e XI1 02 2-1 2z

X 2 (-z) e dxdz
(2.22) rLAA oX 0 )  fz 1.. PX6 x 26 A r(alI)r(s 2)P(A 6 )

where A={(x, z): x-<x 0, z9z 0, x+z>01. Because YA =X A+ZA6 from a
6 6 6

. . . . . . . ...-.. . . . . . .
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transformation of variables in (2.22), for (2.21) to be also true it must follow

that

a 1 + a1-1 r(al + BlI X 212 a1-i 1(X I + I2)w  2"l

(2.23) X1  y r(cs~rG3 l)P(A6) o(Y+W) e w dw.

Examination of the behavior of the two sides of this equation (particularly as y

approaches 0) yields that equality is impossible for aI1>0, a 1 
> 0. As such,

P(A6) =0. It is clear an identical argument will yield that P(A7) =0. As such,

it must be true that the assumption of P(0 <V < 1) > 0 leads to a contradiction,

so P(0<V< 1) =0, and therefore P(X>0, Z>0) =P(X<0, Z<0) =0.

If PkV<0) >0, then since both P(Y<0) >0 and P(Y>0) >0, we have that

P(V . Y>0) >0 and P((l - V)Y >0) >0. This contradicts P(X >0, Z >0) = 0, since X

and Z are assumed to be independent. As such, P(V <0) = 0. Similarly P(V> 1) >0

contradicts P(X<0, Z<0) =0, and therefore P(V> 1) =0. If both P(V= 1)>0 and

P(V=0) >0, then again P(X>3) >0 and P(Z>0) >0, respectively, which is again a

contradiction. Therefore we finally have that if P(Y> 0) >0 and P(Y < 0) >0, then

P(V = 0) = 1 (condition 2), or P(V = 1) = 1 (condition 3).

In the next section, the random difference equation which motivated this

characterization of the gamma distribution is given.

3. Concluding Comments

Paulson and Uppuluri (1972) and Verwaat (1979), have characterized some of

the limiting distributions for a random difference equation with one dimension.

For a very specific two-dimensional model, the above characterization of the

gar-ia arises whenL the asymptotic independence of the two compartments is consid-

ered.
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The equation to be considered is difined for n> 0 by the recursive equation

Y l,n V n  1- Vn  Y l,n- 1 U n

(3.1) ( +
Y 2,n 0 W n  Y 2,n - 1 0

where {Vn , in, U } is an i.i.d. sequence, independent of each other and Y

Kesten (1973) has given some conditions under which the convergences in distribu-

tion of Y is assured. Should Y n converge in distribution to Y = (YIfY 2), then for

(3.2) *(s, t) =E(exp(is Y1 
+ it Y2))

ip(s) E(exp(is UI1)

it is easily verified that

(3.3) (s, t) ( ¢s) E (sV I + t{(Z - V 1) . twlz)•

From the assumed independence of Y1 and Y2 it follows that

(3.4) (s, t) =*(s)ECsVI + t ~l - V l , 0)E¢(0, Vl )

and that

(3.5) ¢Cs, t)= P(s)E¢CsVlO 0)-'g(l -Vl1), 0)E (0, tW 1).

Define the set A c P. by

(3.6) A= {s: ( (s) =0) u (E (O, s 1 ) =0)).

If Ac is dense in R then by equating (3.4) and (3.5) it is clear that for all

s, teR2

(3.7) E.(sV1 + tC - V, 0) =E .V 1 , 0Z(t I - V1 ), 0).
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From (3.7) it is cle,: that should Ac be dense, then Y1 and Y2 are independent

if and only if V 1Y and (1- V,)Y 1 are independent. This is the concern of sec-

tion 2.

The most reasonable and realistic condition on (Un , Vn Wn I in order for Ac

to be dense is given in the following corollary.

COROLLARY 3.1. If U ZO, O<V <1, and W 2O for all n, then Y1  andY are
. n n n ,n 2,n-

asymptotically independent if and only if Un has a Gamma distribution and Vn has

a beta distribution, or one of the four trivial conditions of theorem 2.2 are

true.

The proof follows immediately from theorem 2.2, the conditions for conver-

gence of (3.1) given in Kesten (1973), and the fact that the characteristic

functions of non-negative random variables have dense support (see Smith (1962)).

Clearly, other restrictions of Un, V, n will yield that Ac is dense, how-

ever, the more interesting problem of characterizing the asymptotic independence

of Y1 ,n and Y2,n appears to be an open question.

- ..-. . .-, ....... ..........-...... . ...... ,-,....,'..............-..,. ....-.......... .-"..-.
•.. ,,..-.' - ..-. "...-. -.. . .*. .' . " . "., "., ," , ." ." . "
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